Design Optimization and Fabrication of High-Sensitivity SOI Pressure Sensors with High Signal-to-Noise Ratios Based on Silicon Nanowire Piezoresistors

نویسندگان

  • Jiahong Zhang
  • Yang Zhao
  • Yixian Ge
  • Min Li
  • Lijuan Yang
  • Xiaoli Mao
چکیده

In order to meet the requirement of high sensitivity and signal-to-noise ratios (SNR), this study develops and optimizes a piezoresistive pressure sensor by using double silicon nanowire (SiNW) as the piezoresistive sensing element. First of all, ANSYS finite element method and voltage noise models are adopted to optimize the sensor size and the sensor output (such as sensitivity, voltage noise and SNR). As a result, the sensor of the released double SiNW has 1.2 times more sensitivity than that of single SiNW sensor, which is consistent with the experimental result. Our result also displays that both the sensitivity and SNR are closely related to the geometry parameters of SiNW and its doping concentration. To achieve high performance, a p-type implantation of 5 × 1018 cm−3 and geometry of 10 μm long SiNW piezoresistor of 1400 nm× 100 nm cross area and 6 μm thick diaphragm of 200 μm× 200 μm are required. Then, the proposed SiNW pressure sensor is fabricated by using the standard complementary metal-oxide-semiconductor (CMOS) lithography process as well as wet-etch release process. This SiNW pressure sensor produces a change in the voltage output when the external pressure is applied. The involved experimental results show that the pressure sensor has a high sensitivity of 495 mV/V·MPa in the range of 0–100 kPa. Nevertheless, the performance of the pressure sensor is influenced by the temperature drift. Finally, for the sake of obtaining accurate and complete information over wide temperature and pressure ranges, the data fusion technique is proposed based on the back-propagation (BP) neural network, which is improved by the particle swarm optimization (PSO) algorithm. The particle swarm optimization–back-propagation (PSO–BP) model is implemented in hardware using a 32-bit STMicroelectronics (STM32) microcontroller. The results of calibration and test experiments clearly prove that the PSO–BP neural network can be effectively applied to minimize sensor errors derived from temperature drift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is high...

متن کامل

Top-down fabricated silicon nanowire sensors for real-time chemical detection.

Silicon nanowire (SiNW) sensors have been developed by using top-down fabrication that is CMOS (complementary metal-oxide-semiconductor) compatible for resistive chemical detection with fast response and high sensitivity. Top-down fabrication by electron beam lithography and reactive ion etching of a silicon on insulator (SOI) substrate enables compatibility with the CMOS fabrication process, a...

متن کامل

Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam dampin...

متن کامل

Fabrication of SOI-Based Nanowire Sensors

Silicon nanowire sensors are fabricated from the active silicon layer of silicon-on-insulator (SOI) wafers and used for label-free sensing of specific proteins. A fabrication method is demonstrated which avoids the integration difficulties inherent in a bottom-up approach, without the drastic decrease in carrier mobility usually associated with reactiveion-etched nanowires. Nanowire devices are...

متن کامل

Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016